http://www.sufeinet.com/plugin.php?id=keke_group

苏飞论坛

 找回密码
 马上注册

QQ登录

只需一步,快速开始

分布式系统框架(V2.0) 轻松承载百亿数据,千万流量!讨论专区 - 源码下载 - 官方教程

HttpHelper爬虫框架(V2.7-含.netcore) HttpHelper官方出品,爬虫框架讨论区 - 源码下载 - 在线测试和代码生成

HttpHelper爬虫类(V2.0) 开源的爬虫类,支持多种模式和属性 源码 - 代码生成器 - 讨论区 - 教程- 例子

查看: 2723|回复: 0

文本相似度计算

[复制链接]
发表于 2012-9-14 14:59:03 | 显示全部楼层 |阅读模式
在向量空间模型中,文本泛指各种机器可读的记录。用D(Document)表示,特征项(Term,用t表示)是指出现在文档D中且能够代表该文档内容的基本语言单位,主要是由词或者短语构成,文本可以用特征项集表示为D(T1,T2,…,Tn),其中Tk是特征项,1<=k<=N。例如一篇文档中有a、b、c、d四个特征项,那么这篇文档就可以表示为D(a,b,c,d)。对含有n个特征项的文本而言,通常会给每个特征项赋予一定的权重表示其重要程度。即D=D(T1,W1;T2,W2;…,Tn,Wn),简记为D=D(W1,W2,…,Wn),我们把它叫做文本D的向量表示。其中Wk是Tk的权重,1<=k<=N。在上面那个例子中,假设a、b、c、d的权重分别为30,20,20,10,那么该文本的向量表示为D(30,20,20,10)。在向量空间模型中,两个文本D1和D2之间的内容相关度Sim(D1,D2)常用向量之间夹角的余弦值表示,公式为:
余弦公式略
其中,W1k、W2k分别表示文本D1和D2第K个特征项的权值,1<=k<=N。
在自动归类中,我们可以利用类似的方法来计算待归类文档和某类目的相关度。例如文本D1的特征项为a,b,c,d,权值分别为30,20,20,10,类目C1的特征项为a,c,d,e,权值分别为40,30,20,10,则D1的向量表示为D1(30,20,20,10,0),C1的向量表示为C1(40,0,30,20,10),则根据上式计算出来的文本D1与类目C1相关度是0.86

那个相关度0.86是怎么算出来的?

是这样的,抛开你的前面的赘述

在数学当中,n维向量是 V{v1, v2, v3, ..., vn}
他的模: |v| = sqrt ( v1*v1 + v2*v2 + ... + vn*vn )
两个向量的点击 m*n = n1*m1 + n2*m2 + ...... + nn*mn
相似度 = (m*n) /(|m|*|n|)
物理意义就是两个向量的空间夹角的余弦数值
对于你的例子
d1*c1 = 30*40 + 20*0 + 20*30 + 10*20 + 0*10 = 2000
|d1| = sqrt(30*30 +20*20 + 20*20 + 10*10 + 0*0) = sqrt(1800)
|c1| = sqrt(40*40 + 0*0 + 30*30 + 20*20 + 10*10) = sqrt(3000)
相似度 = d1*c1/(|d1|*|c1|)= 2000/sqrt(1800*3000)= 0.86066



1. 开通SVIP会员,免费下载本站所有源码,不限次数据,不限时间
2. 加官方QQ群,加官方微信群获取更多资源和帮助
3. 找站长苏飞做网站、商城、CRM、小程序、App、爬虫相关、项目外包等点这里
您需要登录后才可以回帖 登录 | 马上注册

本版积分规则

QQ|手机版|小黑屋|手机版|联系我们|关于我们|广告合作|苏飞论坛 ( 豫ICP备18043678号-2)

GMT+8, 2024-12-23 07:19

© 2014-2021

快速回复 返回顶部 返回列表